Genomic Analysis of the Basal Lineage Fungus Rhizopus oryzae Reveals a Whole-Genome Duplication
نویسندگان
چکیده
Rhizopus oryzae is the primary cause of mucormycosis, an emerging, life-threatening infection characterized by rapid angioinvasive growth with an overall mortality rate that exceeds 50%. As a representative of the paraphyletic basal group of the fungal kingdom called "zygomycetes," R. oryzae is also used as a model to study fungal evolution. Here we report the genome sequence of R. oryzae strain 99-880, isolated from a fatal case of mucormycosis. The highly repetitive 45.3 Mb genome assembly contains abundant transposable elements (TEs), comprising approximately 20% of the genome. We predicted 13,895 protein-coding genes not overlapping TEs, many of which are paralogous gene pairs. The order and genomic arrangement of the duplicated gene pairs and their common phylogenetic origin provide evidence for an ancestral whole-genome duplication (WGD) event. The WGD resulted in the duplication of nearly all subunits of the protein complexes associated with respiratory electron transport chains, the V-ATPase, and the ubiquitin-proteasome systems. The WGD, together with recent gene duplications, resulted in the expansion of multiple gene families related to cell growth and signal transduction, as well as secreted aspartic protease and subtilase protein families, which are known fungal virulence factors. The duplication of the ergosterol biosynthetic pathway, especially the major azole target, lanosterol 14alpha-demethylase (ERG11), could contribute to the variable responses of R. oryzae to different azole drugs, including voriconazole and posaconazole. Expanded families of cell-wall synthesis enzymes, essential for fungal cell integrity but absent in mammalian hosts, reveal potential targets for novel and R. oryzae-specific diagnostic and therapeutic treatments.
منابع مشابه
Correction: Gene Expansion Shapes Genome Architecture in the Human Pathogen Lichtheimia corymbifera: An Evolutionary Genomics Analysis in the Ancient Terrestrial Mucorales (Mucoromycotina)
Lichtheimia species are the second most important cause of mucormycosis in Europe. To provide broader insights into the molecular basis of the pathogenicity-associated traits of the basal Mucorales, we report the full genome sequence of L. corymbifera and compared it to the genome of Rhizopus oryzae, the most common cause of mucormycosis worldwide. The genome assembly encompasses 33.6 MB and 12...
متن کاملElusive Origins of the Extra Genes in Aspergillus oryzae
The genome sequence of Aspergillus oryzae revealed unexpectedly that this species has approximately 20% more genes than its congeneric species A. nidulans and A. fumigatus. Where did these extra genes come from? Here, we evaluate several possible causes of the elevated gene number. Many gene families are expanded in A. oryzae relative to A. nidulans and A. fumigatus, but we find no evidence of ...
متن کاملHow does antifungal pharmacology differ for mucormycosis versus aspergillosis?
Over the last decade, advances in diagnostic systems and the introduction of new antifungal agents have significantly improved outcomes in immunocompromised patients who develop invasive aspergillosis. However, mortality rates remain relatively unchanged for less common, but highly aggressive, mold infections such as mucormycosis. Recent genome sequencing of Rhizopus oryzae revealed evidence of...
متن کامل15-P045 The hox gene complement of a basal teleost, Pantodon bucholzi (Osteoglossomorpha)
Gene and whole genome duplications have profoundly shaped the structure and function of the vertebrate genome. Teleost fish, which comprise approximately 50% of all known vertebrate species, have undergone a third round of whole genome duplication (3R) above and beyond the two rounds of whole genome duplication shared by all vertebrates (2R). Most non-teleost vertebrates including tetrapods hav...
متن کاملThe rice endophyte Harpophora oryzae genome reveals evolution from a pathogen to a mutualistic endophyte
The fungus Harpophora oryzae is a close relative of the pathogen Magnaporthe oryzae and a beneficial endosymbiont of wild rice. Here, we show that H. oryzae evolved from a pathogenic ancestor. The overall genomic structures of H. and M. oryzae were found to be similar. However, during interactions with rice, the expression of 11.7% of all genes showed opposing trends in the two fungi, suggestin...
متن کامل